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Abstract

An investigation (s--beenconducted to find out whether #-ot there

are possibilities to construct a procedure capable of giving reasonably

accurate results for the aircraft wave drag coefficient over a range of

Mach numbers or, at least, to predict the wave drag changes due to

configuration changes.

The idea was to build an algorithm starting from the standard super-

sonic area rule but employing different definitions for the area distribu-

tion along the longitudinal axis as applied to the equivalent body of

revolution. Instead of using the set of planes tangent to the character-

istic Mach cones, lateral surfaces of the cones were used. A computer

program to perform the calculations following the procedure proposed h"

Several aircraft configurations h4.--bee investigated by employing

the developed method and very promising results for a particular type of

supersonic aircraft configuration at moderate supersonic speeds have been,'

obtained. When applied to predict the wave drag of a configuration

employing a thin wing of small aspect ratio centrally mounted on a slender

fuselage at Mach numbers between 1.4 and 2.0, the method easgivienTiresults

within a range of ten percent accuracy.

vi



AN INVESTIGATION OF NEW POSSIBILITIES TO SIMPLIFY

THE STANDARD SUPERSONIC AREA RULE

I. Introduction

Since its appearance the supersonic area rule has been extensively

used as a powerful tool for predicting the aircraft wave drag coefficient.

Jones' result, known as the supersonic area rule, has proven itself as a

good approximation to the correct linearized theory result, the one given

by Lomax. The degree of approximation has particularly been very high

for such cases as non-lifting wings centrally mounted on slender body type

fuselages.

0 Several computer programs employing the supersonic area rule have

been written. The one written by Boeing Company (Ref 1) in the 1960's

*has been widely used both as a complete program for the wave drag calcula-

tions or as a part of more complex programs for the airplane design purposes.

This is by no means the only program in use today; the 124J Program (Ref 2)

has been developed by Northrop Company, the Langley Research Center (Ref 2)

has written another program, and so forth. What all of these programs have

had in common is significant complexity of the input data set required and

large core requirements (Ref 3) which means that without access to large

computer systems one cannot even think of employing the procedure. This

has been the reason for aerodynamicists along the way to try to simplify

somewhat the method. Several such attempts are described in Section II,

and particularly one done by E. J. Jumper (Ref 3).



J ' - The purpose of the study described in this paper was to investigate

the possibility of modifying the supersonic area rule in the following

way. Rather than using families of parallel planes always tangent to the

characteristic Mach cones, the lateral surfaces of the cones themselves

are employed. This, together with approximating an airplane by an

equivalent body of revolution, represents the essence of the modificati-n

proposed (Ref 4). Obviously, several possibilities of defining the ar

of interest at a given axial location exist, i.e., either the forward

or backward Mach cone can be used, and each of the two choices can be

divided further into two sub-cases so that four different definitions

for S(x) can be defined and algorithms for each of the cases were devised

and incorporated into a computer program (i.e., four versions of the same

program). Aircraft configurations for which data exist were used to

- determine the validity of each of the four methods. The version employing

the backward projection of the down-stream Mach cone proved superior over

the others.

Along with the portion of the study described above, this study has

been a kind of further numerical validation of the procedure proposed by

E. J. Jumper (Ref 3). His method gave good results, particularly at

*transonic and lower supersonic Mach numbers and proved generally superior

to the four proposed new methods.

The advantages of all these methods over use of the full supersonic

area rule are that they require very simple input format and the programs

can be run on almost any computer with only modest core.

The present study has pointed out that the two methods, the Jumper

method and the method developed by making use of the down-stream Mach cone

2
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U cut area projection, should be investigated further both analytically and

nt 1cally by applying them to a number of systematically chosen aircraft

configurations. It would be rather important to have at hand a relatively

simple method capable of giving quick results within limits of, say, ten

percent accuracy. Such a method would be useful for early project

management decisions and design studies. The fact that high speed computers

of enormous capabilities and modern aerodynamic design methods are readily

available does not eliminate the need for simple procedures easily prepared

and performed.

-a.%
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I. The Supersonic Area Rule - Review of the Basic Theory
and Previous Attempts to Simplify the Method

Supersonic Drag

If one assumes that the flow id nowhere separated, the drag of an

aircraft flying at supersonic speeds is due to the following three

mechanisms:

1. Skin friction drag
2. Vortex drag
3. Wave drag

The first two drag components are essentially the same as in sub-

sonic flow. The third component -- the wave drag -- represents a peculiar-

ity of supersonic flows and will be treated in more detail.

Skin friction drag is due to the phenomena that occur in boundary

layers -- thin layers of viscous fluid near to the aircraft surface. To

determine this drag component an aerodynamicist should perform calculation

of the boundary layer in a manner basically the same as for subsonic flow.

It should be pointed out that this component may represent a considerable

fraction of the total aircraft drag (a typical amount is 30 percent). So,

any realistic drag analysis must include the skin friction drag.

The vortex drag arises from the momentum, and hence kinetic energy

left in the fluid as a lifting vehicle, travels through it (Ref 5).

Since the vorticity remains essentially stationary with the fluid, there

is no fundamental difference between this drag at subsonic and supersonic

speeds. In fact, the vortex drag can be calculated by use of formula for

the induced drag of a lifting three-dimensional wing in incompressible

flow. In the supersonic case, however, the lift will induce an additional

4

I,,



N-' . .. . . .*..o *- . . .

drag component, namely the wave drag due . lift.

Mechanism of the Wave Drag Creation

4The wave drag is an aerodynamic phenomenon unique to supersonic flow

and is associated with the energy radiated away from the vehicle in the

form of pressure waves in much the same way as a fast-moving ship causes

waves on the water surface (Ref 5).

The wave drag of a planar wing can be divided into two parts: the

wave drag due to thickness and the wave drag due to lift. Often the sum

of the wave drag and the vortex drag is called the pressure drag since it

is manifested by the pressure times the chord-wise slope of the wing or

body surface.

As stated in Reference 6, in a steady inviscid subsonic flow, the

pressure drag arising from the thickness of the body or wings is negligible

so long as the shapes are sufficiently well streamlined to avoid flow

separation. In that case there exists no possibility of either favorable

or adverse interference on the pressure distributions themselves. If

one body is so placed as to receive a drag from another, then the second

body is sure to receive a corresponding increment of thrust from the first.

At supersonic speeds this tolerance disappears and drag becomes

sensitive to the shape and arrangement of the bodies. While it appears

that the primary factor here is the thickness ratio (Ref 7), there exist

arrangements in which a large cancellation of drag occurs. Examples of

the latter are the sweptback wing and the Busemann biplane.

Whitcomb has found that the major part of the supersonic wave drag

for a wing-body combination results from losses associated with shocks

5
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o at considerable distances from the configuration (Ref 8). This led him

to the conclusion that the wave drag may be estimated by considering the

stream disturbances produced by a configuration at these distances.

Leyman and Markham stated that on physical grounds wave drag is

most satisfactorily associated with the entrophy rise across the shock

waves, but this is not very useful in practice (Ref 9). Within the

linearized theory one can calculate wave drag by considering the lateral

convection of streamvise momentum. The distinction between wave drag and

vortex drag becomes clearer when we attempt to calculate the drag from

momentum considerations. For this purpose we surround the vehicle by a

control surface consisting of a cylindrical surface, S2, of radius R

closed by two end planes, S1 and S3 (see Figure 1). For present purposes,

we assume that the radius R is very large compared with a typical

dimension of the aircraft. We also assume S and $3P the end surfaces,

to be placed well away from the vehicle which in turn is assumed to have

negligible base areas. A consideration of the momentum flow through the

surfaces rives, to lowest order, the stream-wise force component

-- 2f$ P dS2 + ff ((D.2 + 2 ) d5()
S2  S3

where q - (1/2)pU 2 , and x, y, z are the wind axes.

The first term represents the wave drag, which in the absence of

any trailing vorticity will be equal to the pressure drag. The second

* term represents the vortex drag of the vehicle which is identical to

6
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Figure 1. Momentum Control Surface for Drag Calculation
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• . the induced drag for subsonic flow. Here, D is the perturbation velocity

potential and tx' ty, and tr are the perturbation velocity components.

The wave drag component amounts to a considerable fraction of the

total aircraft drag. Donlan pointed out that the wave drag can create

formidable design problems as illustrated in Figure 2 (Ref 10). For the

flight condition assumed, the drag coefficient associated with level

flight increases markedly with Mach number as the speed of sound is

approached and exceeded. While the friction component and the trim drag

component (including induced drag) are still of significance at supersonic

speeds, the wave drag component is responsible for the large increase in

drag coefficient shown. The wave drag component is primarily independent

of the lift and thus can usually be analyzed for the zero-lift condition.

Lomax's Result for the Wave Drag Coefficient

Lomax (Ref 11) presented the development of an exact (within frame-

work of the linearized theory) formula for the wave drag of any lifting

or non-lifting object in a steady supersonic flow. He considered a

supersonic flow subject to the following assumptions:

-- Steady flow

-- Small angle of attack

Then the disturbed flow field may be approximated by the following

linearized potential flow equation:

s2 xx yy zz = 0 (2)

" "where the free-stream is moving in the positive x direction and 62 M 2 _ 1.

8
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• Lomax made use of the general solution to Eq (2) given by Volterra:

- 2X

XYZ 1_ T_ Br1 +S 1X (3)
2r-- f f I

T

where r =2 _ (y-yl)2 + (Z-Zl)2 , and dS1 is an element of surface area

on the airplane, V1 is the outward conormal (the conormal to the

characteristic cone lies along the cone) to that element, and T is that

portion of the airplane surface within the Mach cone from the point

x,y,z.

The wave drag of the airplane can be expressed in terms of the

perturbation velocities induced by the object on an enclosing cylindrical

control surface of infinite radius. The equation employed for that

purpose is conveniently written in terms of the cylindrical coordinate

system defined in Figure 3a. It should be pointed out that the control

surface is parallel to the free-stream direction, that is, the relative

wind defines the x coordinate. Then the wave drag is given by

2Tr 00

foof d6 f dx (lim r x (4)
0 -W r-*x

Under the assumptions at the beginning of this section the wave

drag of an arbitrary body is calculated by using Eq (3) to find the two

-\ derivatives needed for Eq (4). Eq (3), however, requires the conormal

9
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•partial derivative -- ) and the differential element (dSI ) Within1the

framework of linearized theory these are given by

a =a (5)
av a

and

dS1 = ds1 dx1  (6)

_ where n1 is either the normal to the airplane surface or the normal to

the surface in the y1 , z1 plane, and ds is an element of arc along the

airplane surface in an x1 = constant plane.

The perturbation potential given by Eq (3) is now, for convenience,

divided into two parts:

*(x,y,z) = *l(x,y,z) + 2 (x,y,z) (7)

The two terms in Eq (7) are given as:

(xyz)X + Xl)- dx ds (8)
1 27 axrH 1 1

T
,SR.

' I1



4

and

x-x + (x-x1) 2- 2r12
Z) 1

-(X'y '' In - r - dx ds (9)

T

and each of the two terms can be considered separately, i.e., the

partials *x and 0r of both parts are needed for Eq (4). Further, the

partials are to be found in the limit as r /7y2 + Z2 goes to infinity.

However, since no disturbance can be induced ahead of the foremost Mach

cone enveloping the disturbing object, it is convenient to increase

x as r is increased so that the point (x,r,6) remains in the vicinity

of this Mach cone (Ref 11:5). After setting x = x + 8r (Figure 3b),0

as r becomes very large, one can show that Eq (8) reduced to

-1 [ r n 1(Xl'Sl1) dXl1 dSl1

-I(x're) = 27r 28r J /x o - x1 +6y1 Cos e + 8Z1 Sin e (10)

T

If we now introduce the following transformation

x - 8y1 Cos B - Z Sin e

- s (11)

Eq (10) is further simplified to

12
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(X, x e 2r, f - fc*n1 V - (,a), a do (12)
-T 0 OC

where f do is a line integral around the airplane surface in the oblique
oc

cut.

The velocity potential 0l given by Eq (12) is exactly the same as

that induced on a large cylinder by a line of sources distributed along

the x1 - axis from - to x0, the variation of their strength given by

n 1do. This was first pointed out by Hayes (Ref 12).
oc

The physical meaning of the term f On1 dO can be more easily under-
oc

stood with aid of Figure 3c (Ref 11:7). Imagine a series of Mach planes

parallel to the yl - axis each given b, the equation x -B I = constant.

Place the airplane in its normal flight attitude. Each Mach plane slices

through the airplane, defining, thereby, a certain area composed of the

region on the Mach plane within the airplane surface. Project these

areas on planes normal to the free-stream (i.e., y1 ,Zl planes) and

designate the resulting area distribution by S( ,-). The integral

oCf Onlda is then proportional to the stream-wise rate of change of

these normally projected, obliquely cut areas; that is, for the airplane

so placed,

fon d0r . u Ls( )
o~ '2)

oc

• Now, keeping the Mach planes fixed, revolve the airplane about the

13
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x axis (not about its own body axis unless the latter happens to

coincide with the xI - axis). The same effect would be achieved by hold-

ing the airplane fixed and rotating the Mach planes always tangent to the

characteristic Mach cones. Now, repeat the above process for all

orientations, e, in a complete 360-degree rotation. For any given angle

fn nda = U , S(E'e) = U S'(Ee) (13)

oc

Since it can be shown that ( _ -(OX) rO combining Eqs (12)

and (13) gives

(U) - (¢l) = 0 _ o S"(,6) d (14)

which, by means of Eq (4), gives the complete contribution to the wave

drag of the first term in Eq (3).

But, according to Eq (7) there is one more term to be accounted for --

that one given by Eq 9. Taking the derivative with respect to nl, then

proceeding as before, setting

x - x0 + Or

y - r Cos ,

z - r Sin e

14
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and letting r go to infinity and employing the transformation given

by Eq (11)., 0 2 can be expressed as

*2(x,r,B) - 0kx

dZ

dy1  dZ
X (_ Cos 6 +- Sin 6) do (15)

dn1  dn1

The nomenclature is given in Figure 4a (Ref 11:9) from where we

can notice that the term

0
(dy 1  dZ1
dn_ Cos e + n-, Sin 8) ds
dn 1 dn1

is simply the component of ds1 normal to the constant - 8 plane. If we

designate this direction by the coordinate ae , as in Figure 4a, Eq (15)

becomes

Sx d&

* 2 (xr,e) =f 2da e

15
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dz1  
900

dy1 d

W.Y1 1

csY cos e+ sin y sinG e cos (Y-6)

S (a)

z 1 fCdae = l(&2 '2

C Z 1  fcpdo 6 q. ( , y ah

(b)

Figure 4. Forces in Oblique Planes
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-Further, notice that

~~~k f f( a)o1 =UI~ f(~a

where U(x,a) = Tx 4(x,a), since in linearized theory partial Lf is

considered small relative to unity. If the relation for pressure

coefficient is introduced,

p - po 20x
C p P u 2...0 (16)

2 pI 2 U0

the result of integrating by parts yields

(xre) -aU x° df C dae (17)

This velocity potential is again exactly the same as that induced on

a large cylinder by a line of sources distributed along the xI - axis

from -Co to x , the variation of their strength this time being given by
BUo
2 f Cpdae (Ref 11:9). The physical significance of f Cpdue can be

demongtrated with the aid of Figure 4b (Ref 11:10). Once0 again let us

17
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' imagine a series of planes described by equation s - Z1  const,

parallel to the yl - axis. With the airplane placed in its normal flight

attitude, l(E,2 ) is defined as the lift (the component of net resultant

force in the Z1 direction, positive upward) on a given section formed by

the intersection of a Mach plane with the airplane surface. It can be

shown that the integral is

f pd = q '2

oc

where q is the free-stream dynamic pressure. With the coordinate system

i 0 fixed and the airplane rotated about the xI - axis, at each new 6 angle,

the term qoj Cpdae represents the net lift on the oblique cut at that

particular x,. i.e.,

*11

Cpdae 1 (Ee) (18)

oc

If, on the other hand, the airplane is fixed and the Mach planes are

rotated, I(E,e) represents the resultant obliquely cut section force

normal to the free-stream and parallel to the plane given by 6 = constant.

Plugging Eq (18) into (17) we obtain

18
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(2 )ro= _l(42r)r-= U o___o_2__(19)
" " B27 25 f 11/- o

where 1'(E,e) = L l(E,e) is the stream-wise gradient of the "lift" on

the obliquely cut section. After placing Eqs (14) and (19) into Eq (4)

and carrying out the x integration the following result is obtained:

2"D 1 d L(O) L(O)
2 -2d6 f dx1  dx2  s"(x1,9) - L'(x1,e)J
0 -L 1() -L 1()

- L'(x 9)- (20)

where for any roll angle 9 = constant, the intersecting Mach planes

are extended from x u-LI () to x = L(O).

Eq (20) gives the wave drag of any lifting or non-lifting airplane

in a steady supersonic flow, the only approximations being those basic

to linearized theory (Ref 11).

Jones' Result -- The Supersonic Area Rule

Eq (20) given in the previous section gives the wave drag of any

system of bodies or wings and bodies. The equation is subject to the usual

limitations of the linearized theory.

Two different types of terms can be recognized by looking at that

5.- equation:

19
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h-- Te terms containing the second derivative of
S(x,e), the so-called "area terms", and

h-- e terms containing the first derivative of
l(x,e), the so-call "lift terms".

Physical meaning of both kinds was discussed in the previous section.

If we restrict Eq (20) to the case of non-lifting aircraft, the lift

terms disappear from the equation. So, by neglecting the lift terms,

Lomax's result reduces to the supersonic area rule formula given by

Jones (Ref 6):

+x +x

D(O) - - i fx 0  f 0 S"I(x,e) SII(x 1 ,O) log x -X 1 dxdxl (21)

D-+x +x

DM 1  4- f 0  f 0 S"(X) S"(xl) log x- xI dxdxl (22)

-x -x
0 0

Here, the limits of integration -x and +x correspond to -L1 and L

in Eq (20). The last formula states that at transonic speeds the wave

drag of a wing-body combination depends solely on the longitudinal

development of the total cross-sectional area intercepted by a plane

perpendicular to the stream at the station x.
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R. T. Whitcomb has come to the same result (Ref 13). He has shown

how the drag at transonic speeds may be reduced to a surprising extent

by simply cutting out a portion of the fuselage to compensate for the

area blocked by the wing. This transonic aircraft design procedure was

named the transonic area rule. That is the reason why Eq (21) was

christened the "supersonic area rule" -- the equation being a generaliza-

tion of more specific Whitcomb's result.

Whitcomb's deduction of the "area rule" was based on considerations

of stream-tube area and the phenomenon of "chocking" -- which follow from

one-dimensional-flow theory. Each individual stream-tube of a three-

dimensional-flow field must obey the law of one-dimensional flow. While

we cannot actually determine the three-dimensional field on this basis

alone, nevertheless it provides a good starting point for our thinking

S (Ref 6).

The fact that the wave drag of wings and bodies can be related to

the longitudinal area distribution of the system as a whole was first

recognized by W. D. Hayes in his 1946 thesis (Ref 12). The two are

related in the following manner: It is well known that the flow field

about any system of bodies may be created by a certain distribution of

sources and sinks over the surfaces of the bodies. Hayes' formula and

some other formulas (e.g., those given by Lomax and Heaslet (Ref 14),

and Spreiter (Ref 15) ) relate the drag of such a system to the distribu-

tion of these singularities. To obtain a formula for the wave drag in

terms of area distributions we have to adopt a simplified relation between

the source strength and the geometry of the bodies, namely that the source

. t.-*% strength is proportional to the normal component of the stream velocity

21
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at the body surface. There are examples (e.g., Busemann biplanes and

ducted bodies) for which this assumption is not valid. If, on the other

hand, we limit ourselves to thin symmetrical wings mounted on vertically

symmetrical fuselages, there are indications that a good estimate of

the wave drag at supersonic speeds can be obtained on the basis of the

simplified relation assumed (Ref 6).

It should be pointed out that only in special cases may the general

theoretical formulas be reduced to the form of an area rule at both

transonic and supersonic speeds. The previously mentioned pressure term

(that has been neglected in arriving at both the rule concepts) represents

the limiting factor to the correctness of the supersonic area rule even

within the framework of linearized theory (Ref 3). Finally, it should

be noted that the formula given by Eq (22) shows a striking resemblance

to well-known von Karman's result for the slender body wave drag

(Ref 7:239) although the restrictions on the equations are quite different.

Use of the Supersonic Area Rule

Since its appearance, the supersonic area rule has been used as a

tool for calculating the wave drag of wing-body combinations. Several

computer programs have been written and one of the most widely used is

that developed by the Boeing Company in the 1960's described by R. V.

Harris in Reference 1. The same program was included as a part of a

more complex design procedure by Baals, Robins, and Harris in Reference

16, where they showed that for conventional configurations of supersonic

aircraft the supersonic area rule gave good results. But it should be

kept in mind that there are aircraft configurations for which the pressure
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".. . term and C are not small.
D L

The following is a description of a general algorithm used to calcu-

late the wave drag coefficient by employing the supersonic area rule

method.

Let us consider the aircraft of Figure 5a. The length of the air-

craft is divided into n segments, Ax in length along the aircraft longitud-

inal axis which for the purpose of this calculation must coincide with

x- axis (longitudinal axis in the wind axis system). Thus, each end

point of the n segments is given by x = i Ax where i = 1,2,. . .,n and

n - L/Ax.

If one chooses a particular Mach number of interest, say the lowest

Mach number, M - MI , this defines a Mach cone having the half angle

0 WI - Sin (1/Ml), and height OV (see Figure 5b). Examining any point on

the circumference of the base circle, say point A, it is easy to imagine

a generator of the cone that passes through points A and V. The plane

tangent to the cone at the generator VA may now be considered a "cutting

tool" for determining the area cuts through the wing-body configuration.

Let p be this plane. When attached to the x - axis at location (x , 0,0)

such that OA is parallel to the Oz - axis, then the plane p will intersect

the aircraft making a figure in p. This figure bounds the area composed

of the region on the Mach plane within the airplane surface. The projected

area bounded by the figure onto a plane normal to the free-stream at

x W x1, is the area, Sl, that we are interested in (see Figure 5c).

The cone-plane assembly is then moved along the x - axis until point

V reaches point (x2,0,0), and process repeated to yield S2 and so on until

... the vertex reaches point (L,0,0) supplying us with a table of values:

23



V.7

z

My

L

(a)

.3.

(b)

SA

* (d)
S. - rr 2  X

rr

(e)

Figure 5. Use of the Supersonic Area Rule
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SS 2  .,S (the normal projections of the areas obtained by cutting
21 n

the aircraft by Mach plane at an angle I1 measured from the x - axis --

see Figure 5d). This set then defines an equivalent body of revolution

in the following manner:

-- The length of the body is exactly L.

-- The cross-sectional area of that body at a distance
x. from its foremost point is S., i = 1,2,. .,n,
(slee Figure 5d). i

Having the equivalent body of revolution for the single rotation
*7r

angle, 0 (e = for this case), Eq (21) is used to calculate the wave drag
2

coefficient of the body of revolution at that Mach number MI. The second

derivative of S(x) needed for Eq (21) can be determined by employing a

numerical scheme to first find S'(x) then S''(x. The integration

required in Eq (21) is then carried out numerically.

According to Eq (20), this task must be repeated for many 6's so

that the integration may be carried out numerically. This may be done by

rotating the generator or taking the plane-cone assembly, "disconnecting"

it and reconnecting it again along the VB generator of Figure 5b. Radii

OA and OB make an angle (4AOB). This angle, 4AOB, is the roll angle A6,

since the same effect could be achieved if the plane along the VA generator

were fixed and the aircraft rolled about the x - axis by AG. This angle

is measured from the positive y - axis, thus, the first area distribution

described above corresponds to roll angle e -i.

The result of repeating the integration of Eq (21) gives another value
C,7

for the wave drag coefficient which corresponds to e A8, and so on

for each increment of 6 through all roll angles up to 360 degrees. If the

25
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aircraft is symmetric, these computations may stop at a e of 180 degrees.

If AO - 1 degree, a minimum of 180 such computations must be performed.

In other words, 180 equivalent bodies of revolution must be constructed.

The final integration of Eq (20) is just a simple average which yields

the zero-lift wave drag coefficient, CD , of the aircraft flying at that
0

particular Mach number.

The entire process is repeated for each Mach number of interest.

Thus, in order to be applicable to analyze an aircraft configuration

across the range of Mach numbers, any algorithm of this type must include

three do loops:

1. Inner one over x., i = 1,2,. .,n

2. Medium one over e., j = 1,2,. .,180/A6

J

3. Outer one over Mk , k 1,2,. .. ,(M - M . )AM
max min

A few words should be mentioned on the cross-sectional areas obtained

by cutting the complete aircraft structure by Mach planes, each of which

is defined by two angles, p and e. It is not difficult to imagine what

the cut area looks like if P = 90 (then e has no effect). This is the

limiting case for M - 1 and the supersonic area rule reduces to the

transonic area rule which states that in order to obtain a low wave drag

configuration we have to keep dS/dx curve as smooth as possible.

Expanding S'(x) - dS/dx in a Fourier series, as Sears did, will yield a

formula for the drag analogous to that one for the induced drag of a wing

in terms of its span-wise load distribution. Having that, a low drag

26



" *.'*** configuration with a given base area, or with a given overall volume within

the given length, may be obtained by suppressing the higher harmonics in

the curve S'(x) (Ref 6).

It is more difficult to imagine the area obtained by cutting the

configuration with a plane at arbitrary u and e. Figure 6 shows two such

areas obtained by cutting an aircraft with Mach planes at different Mach

angles U and roll angles e. The lower portion of the figure shows two

longitudinal distributions. These illustrate that an optimum area

distribution at one Mach number might not be an optimum distribution for

another Mach number. In other words, an aircraft configuration designed

(i.e., indented) for a particular Mach number may have good drag

characteristics at that design Mach number (see for example Ref 6). The

reason for such a phenomenon is that at higher Mach numbers, particularly

above M - 1.6, the distributions become irregular, resulting in higher

values of the second derivatives, S"(x,O), and therefore, higher the

wave drag coefficient values.

* Simplifications to the Supersonic Area Rule

Bearing in mind the calculation complexity and the difficulty of

preparing appropriate input data for the procedure described above, it is

4.4 not surprising that aerodynamicists have tried to simplify the method.

Harris (Ref 1) made a modification by simplifying the fuselage description.

Smith, et. al. (Ref 17) described a simplification of the standard

supersonic area rule that used only one set of the Mach planes -- that of

parallel vertical planes which intersect the configuration planform along

Mach lines (for more details, see Ref 17). They applied this exploratory
.-

• 27



- a a. -Ole

Cross

setoalWn

are

..............

::Axiala Wingnc

Figure 6. Area Distribution Given By Intersection
of Mach Planes

28



approach to calculate the drag of external stores and nacelles at

transonic and supersonic speeds. The data obtained showed a trend

similar to that at transonic speeds. If located in a region where its

area peak adds to the wing-fuselage peak (viewed along the Mach line),

the store produces higher drag than if located a short distance forward

or aft x - 0 point, x being the distance between the two peaks (Ref 12).

Some of their results are shown in Figure 7.

The most fundamental simplification made to the supersonic area

rule is that one proposed by Jumper (Ref 3). Jumper reduced the whole

aircraft structure to a single body of revolution having the same

longitudinal cross-sectional areas as the original airplane configuration.

The supersonic area rule was then applied to this single body of revolu-

tion. This modification achieved two important simplifications: First,

* the input data set becomes the simplest possible (see Figure 8), and

secondly, only one set of Mach planes need be used for each Mach number

of interest. Jumper did not propose this simplified algorithm as a

procedure for highly accurate wave drag predictions, but rather as an

auxiliary tool for system-design studies or early program management

decisions. As such, it is meant to supply the user with quick yet

reasonable data, particularly if applied to predict the wave drag

increment due to adding near-fuselage-axis protuberances where a good deal

of information about the aircraft in question is already known.

Referring to Figure 8, instead of describing the actual aircraft

configuration by inputting a large number of points in a 3-D space, Jumper

proposed entering data for the normal plane cut areas along the aircraft

longitudinal axis. These make up the equivalent body of revolution to
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which Eq (21) is applied once for each Mach number of interest -- and only

once, since for a body of revolution Mach plane cut areas do not depend

on a particular roll angle.

Briefly, the Jumper procedure would be as follows:

-- Enter normal planes cut areas, say A. = A(x.).

-- Construct an equivalent body of revolution (the airplane
and the body of revolution have the same cross-sectional
area at any given axial location x).

-- Choose an initial Mach number which defines a Mach plane.

Let this Mach plane translate down-stream starting from
xI = Ax, then x2 

= 2Ax, and so forth up to xn = L.

-- At every one of these locations, take the cut area between
the Mach plane and the equivalent body of revolution
configuration (the linear approximation is used) and project
that onto a normal plane. This will give us exactly n
projected areas (Si , i = 1,2,. .. ,n).

-- These projected areas define another body of revolution
that has the normal plane cut area at x. exactly equal to

S., once again i = 1,2,. . .,n. 11

-- Having S. = f(x.) at a set of points we then calculate

s'(x) n (x2

-- Apply Eq (21) to obtain the wave drag coefficient of the
body of revolution at that Mach number. (This is the body
of revolution for which area distribution is given by
S(x.) = S. not A.).

I 1 I

-- Repeat the procedure for each desired Mach number.

It is obvious from the above description that this procedure is

exactly the full supersonic area rule when applied to a body of revolution.

In order to validate the simplification proposed, Jumper applied the

modified procedure to a number of controls. He showed that the simplified

V supersonic area rule exactly predicted the most favorabl' longitudinal

V.
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location to place a concentric protuberance on a given configuration

(body of revolution). As he has pointed out, that result could not be

attributed to his simplification but to the full supersonic area rule

since the simplification, when applied on a body of revolution, is no

longer simplification. Then he applied the procedure to aircraft

configurations. He chose Models 1, 4, and 5 from Reference 18 for the

following reasons:

a. Model 1 was a simple body of revolution for which his
method should give the same results as the standard
supersonic area rule;

b. Model 4 represented an example of moderately large areas

located far off axis for which the supersonic area rule
did a good job; and

c. Model 5 represented an extreme case of large areas located
far off axis for which even the supersonic area rule began
to fail (Ref 3:13).

-His results for these three models are shown in Figure 9 (Ref 3).

The results pertaining to the body of revolution were identical. The

results for Model 4 were within a 20 percent accuracy at M = 1.1, and

within 7 percent at M = 1.5, which may be considered a good result

keeping in mind the simplification proposed. And, finally, the results

for Model 5 were far off the experimental ones as were those from the

standard supersonic area rule. In summary, for those configurations

for which the standard supersonic area rule gives good agreement with

experiment, it can be expected that his modified procedure would be

able to predict the wave drag with reasonable accuracy.

It should be kept in mind that the comparison made was for the

total zero-lift wave drag value -- not for increments of drag for which

the modification was primarily proposed.
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S ' "Finally, Jumper applied the simplified method to predict wave drag

increments by subtracting the results for an F-15 aircraft with and without

two conformal McDonnell FAST PACK fuel pallets. The wave drag increment

due to this configuration change was calculated and then compared to

both wind tunnel data and supersonic area rule results. The results from

the simplified algorithm were better than expected. This meant that this

fast procedure should be further exploited.

Four New Proposed Simplifications of the Supersonic Area Rule

As stated in the Introduction, the purpose of the present work is

two-fold, first to investigate new possible avenues of simplifying the

supersonic area rule and second to further investigate the validity of the

Jumper simplification. In fact, it might be said that the study is a

comparison of four proposed schemes to that of Jumper.
N

% The four new schemes are derived from the following consideration.

The flow field around a three-dimensional body moving at supersonic speeds

is conical in nature rather than planar. Owing to this fact, Quam (Ref 4)

suggested that it might be interesting to try the following approach:

.-i Instead of using planes at different roll angles tangent to the character-

istic Mach cone of the supersonic area rule, let us for the same purpose

employ the cone itself. At a fixed Mach number, two Mach cones can

originate at a point: One whose foremost point lies at that x location,

the generators being directed down-stream -- this is the domain of

influence for that point (x,O,O); and the other cone, directed up-stream --

the domain of dependence. By making use of the two Mach cones, several

= simplified approaches could be conceived.
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Let us start as Jumper did with the whole structure of an actual

aircraft collapsed to a single body of revolution as in Figure 10. Once

the equivalent body of revolution (which has the same longitudinal cross-

sectional area distribution normal to the airstream at zero incidence) has

been constructed, then a Mach number of interest is chosen, say M1. Refer-

ring to Figure 10, this Mach number defines a Mach cone with a half-angle,

U I Sin-(/M1 ) . The cone can be originated at any point on the body

axis in either direction -- down-stream or up-stream. Let us consider the

down-stream cone the vertex of which is at x = x = mAx, where m =

1,2,. . .,n-1 and n = L/Ax. The cone intersects the equivalent body of

revolution making a cone with a height given by t - xm. The lateral surface

area of the cone (identified in Figure 10 as I) is designated S . Then

the cone is moved further down-stream until its vertex reaches point

x a xm+ I = x + Ax - (m+l)Ax, and a new area, Sm+I , is obtained in the

same manner. Once the cone vertex has travelled through all the points

starting from x - x1 and finishing at x 1 = (n-l)Ax, a set of areas

(sits$2,. .. Sn- 1 ) is obtained. This set is then used to construct another

equivalent body of revolution in such a way that the cross-sectional area

formed by planes normal to the x - axis of this body at any x is exactly

S m . Then Eq (21) is applied to the former body and the wave drag coefficient

is calculated using a scheme similar to that described earlier.

Another Mach number of interest, say M2, defines a new Mach cone and

the procedure is repeated yielding the wave drag coefficient that

corresponds to N2.

By looking at Figure 10 it can be recognized that the area designated

by "I" was employed for the calculation described above. This scheme will
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, be referred to as "Version I".

It should be pointed out that Version I does not employ any kind of

projections of the cone surface area in obtaining the S 's. Since the

standard supersonic area rule employs the projections of S onto a plane
m

normal to the body axis, a new set of projected areas may be defined and

is marked by "II" on Figure 10. This new Sm is nothing but the base of

the cone. When used in conjunction with Eq (21) these S yield a drag
m

coefficient referred to as Version II.

It is easy to define two more versions, III and IV. Those were

obtained basically the same way as Versions I and II -- the only difference

being that the up-stream Mach cone was used. The total number of locations

at which the cone vertex can lay for Versions III and IV was n instead of

n-l for the previous two versions, i.e., m - 1,2,. . .,n.

Since the four schemes described above shared the same starting point

as Jumper's simplification (i.e., reducing a complex aircraft structure

to a simple body of revolution), they preserved the two simplifying

features of his modification -- a simple input data format and a need

to perform only one integration for a particular Mach number of interest.

Thus, there was no need to employ complex procedures such as a 3-D

approximati.cn and curve-fitting techniques as required in application of

the full supersonic area rule algorithms (see for example Ref 13), where

a 24-term Fourier series was used to calculate the slope of the area

distribution.

A description of a computer program incorporating the methods detailed

is included in Appendix I.
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" *.* E"III. Results and Discussion

The programs described in Appendix I incorporating the four versions

for wave drag prediction were employed to find the wave drag of a number

of different aircraft configurations. Additionally, the wave drag

predictions using the Jumper method were performed for comparison. About

twenty different aircraft configurations were found in the literature

which could serve as test cases more or less suitable for the purpose of

the present study. (Unfortunately, not all of these aircraft data were

available at the early stages of the present study. Because of time

constraints, not all the configurations were analyzed.) After the first

three aircraft were analyzed, it became clear (c.f. below) that Version II

was the only one among the four new methods giving appropriately behaved

CDw versus M curves. It was further noticed that the results obtained

by employing Version II were about twice that which was expected. So, the

results were arbitrarily multiplied by one half. The wave drag predictions

employing the factor of one half will be referred to as the results from

Version II' (see CDW2.F Program given in Appendix I). The results of all

four versions initially, then Version II'only, and Jumper's method were

compared to data obtained from free flight tests, wind tunnel tests, the

standard supersonic area rule results whenever available for the

configuration under consideration.

The following aircraft configurations were actually used as test

cases:

-- McDonnell Douglas F-15 EAGLE with two conformal pallets
the T-94 in place and without them

• . -- Fairchild F-105 REPUBLIC with the rear body bump and
"' > without it
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-- Northrop F-5E (single seat) and F-5F (two seat) versions

-- Two V/STOL airplane configurations with wings of variable
sweep

-- Two generic aircraft configurations as follows:

- Contoured body
-- Full body

The effect of canopy location on the wave drag of a generic
sweptback wing-body configuration, two configurations

-- Finally, a series of computations were run on a generic
aircraft configuration to investigate the sensitivity of
the results to the input data accuracy.

The results for each of the above cases will be described in detail

within the following sections.

F-15 With and Without the Conformal Pallet T-94

The two configurations of the aircraft are described in Reference 3.

Figure 11 shows the conformal pallet T-94 placed under the left wing of

an F-15 aircraft, and Figure 12 shows the area distributions. The results

of the investigation conducted by Jumper are given in Figure 13. The

two configurations from reference 3 were run employing all four versions.

The results obtained are presented in Figure 14 (no pallets -- clean F-15)

and Figure 15 (with the pallets). The following can be said based upon

these results:

-- The only method that gave the wave drag versus Mach
number curve looking as it should was Version II.

- The results obtained by employing what was termed as
Version II' looked reasonable, particularly at Mach
numbers higher than M - 1.4.

Figure 16 shows the difference between the wave drag of the aircraft

with the pallets in place minus the wave drag of the clean aircraft. It
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can be seen that Version II' gave results very close to those from Jumper's

study which were in excellent agreement with wind tunnel data available.

Two values from references 19 and 20 almost coincided with the results of

Version II'at the Mach numbers of 1.2 and 1.5. The results obtained by

employing the other versions were too far off, particularly those from

Version I (shown) and, even worse, from Version III (not shown since the

values were so large -- of order of magnitude of 0.1 -- rather than to

reduce the scale for the CDw to a meaningless one).

F-105 With and Without the Rear Body Bump

Description of the model of the aircraft can be found elsewhere

(see for example references 23, 24, and 25).

Wind tunnel investigations have been conducted in the Langley 4- by

4-foot supersonic pressure tunnel at a Mach number of 2.01, and in the

V Langley 8-foot transonic tunnel at Mach numbers of 0.60 to 1.13. Several

configurations (extended nose, wing root fairing, extended wing tips,

added a rear body bump) have been tested; however, the only configurations

for which the longitudinal cross-sectional area distribution data were

available were the basic one and the one with the rear body bump added

to improve the airplane drag characteristics at transonic speeds, the

so-called "Mach-one bump". Figure 17 (Ref 23) shows the two configurations

.5, tested.

Figure 18 shows the wave drag coefficient results as obtained from

the four versions and Jumper's simplification for the "bump off"

configuration. Figure 19 shows the same kind of results from the same

sources but now for the "bump on" configuration. Since the former two

5$. ; figures include both the wave drag data and minimum drag data from
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Figure 18. Some Predicted and Measured Drag Data
of the F-105 Without the Rear Body Bump
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Figure 19. Some Predicted and Measured Drag Data
of the F-105 Aircraft With the Rear Body Bump
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.: . references 23 and 25 at M = 1.13 and M = 2.01 respectively, the results

are given in Table I containing the drag differences. The justification

for such approach was that at zero angle of attack no flow separation

would occur and therefore, the drag difference was basically due to the

wave drag difference.

It can be seen from Table I that Jumper's simplification was the

only modified approach able to give reasonable results, achieving a

fourteen percent accuracy at M = 1.13 and even 9.97 percent relative

error at M = 2.01. So, both the results from Jumper's method stayed

below a fifteen percent accuracy limit. This agreement may be due to

the way in which volume of the bump was added to the basic configuration --

namely as a concentrically placed volume increment which represents the

most favorable case for Jumper's simplification. Remember that the

simplification was primarily developed for investigation of near-to-axis-

protuberances.

Northrop F-5E (Single Seat) and the F-5F (Two Seat) Versions

The first of these configurations used was the F-5E aircraft. The

data for this aircraft, as found in reference 2, were the most complete

for the purpose of this study since wave drag coefficient predictions

over a range of Mach numbers of interest from M - 1.0 to M = 1.8 were

available from two sources -- the 124J Wave Drag Program developed by the

manufacturer, and the Langley Wave Drag Program. It should be pointed

out that the Langley Program is generally used and accepted throughout

the aircraft industry in the United States. Thus, relative errors were

defined as being relative to the results from the Langley program.
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Figure 20 shows the wave drag results for the aircraft obtained

using the four versions and Jumper's modification. (It should be noted

that the scale on the CD axis is extremely small due to the large

values for CD obtained from Version III.)
w

Based on the results for the F-j configuration the following two

decisions were made:

1. To adopt the multiplier of one half as a permanent

modification to Version II. This modification is
justified solely by the success of its prediction
capability and will be addressed again in a later
section.

2. Not to employ any longer Versions I, III, and IV,
since these appear to consistently predict
incorrect CD vs M curve shapes.

w
Figure 21 shows the wave drag coefficient values from the following

methods: the Langley Program, the 124J Program, Jumper's simplification,

and Version II. The relative errors of the three methods based on the

values from the Langley program are shown in Figure 22. It can be seen

from Figure 22 that the relative errors for both simplified methods stayed

within limits of ten percent over a wide range of Mach numbers --

Jumper's method being superior at lower Mach numbers, up to M = 1.25,

and Version II'over the rest of the range considered.

The data for the F-5F were not as complete as those for the single

seat version (F-5E) and wave drag had to be estimated from the minimum

drag coefficient. This was done in three different ways, the results of

which are shown in Table II and Figure 23. The methods were as follows:

1. Using CD  estimated by the Company and the wave
mmn

drag for both planes as the same fraction (percentage)

of the CD
.. , mm5
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JJ

', Table II. Zero-Lift Wave Drag Coefficient of the F-5F Aircraft

M cF CF CF AJI AJII CF AII'I AIIIII

1.1 .039 .038 .0377 3.3% - .79 .0236 39.5 37.9

1.2 .0319 .0304 .0306 4.2 - .49 .0230 28 24.5

1.3 .0274 .0258 .0259 5.7 - .2 .0221 19.5 14.5

1.4 .0254 .0241 .0225 11.4 6.6 .0215 15.4 10.8

1.5 .0251 .0244 .0203 18.9 16.8 .0216 13.8 11.5

1.6 .0248 .0247 .0187 24.6 24.4 .0217 12.5 12.3

1.7 .0245 .0245 .0163 33.5 33.4 .0220 10.2 10.1

1.8 .0243 .0248 .0149 38.6 39.9 .0224 7.6 9.7

Nomenclature: CF  -- The wave drag coefficient for the F-SF aircraft as
D I estimated by using flight test data for C F

D.
Fl

C -- The wave drag coefficient for the F-5F aircraft as
DII estimated by using CF  estimated (Northrop)

F mn
C -- The wave drag coefficient for the F-5F aircraft as

wJ predicted using Jumper's simplified method.

CF  -- The wave drag coefficient for the F-5F aircraft as
DII' found by using Version II'

Axy - The relative error, data from an x source relative
to y source:

CF -CF
D D

Axy(%) = F x 100
CD

WY
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"-. A.- 2. Equating the skin friction drag coefficients for both

aircraft and using CD as estimated by the Company

(CFII). 
min

w

3. Equating the skin friction again but now using CD

as obtained from flight 
tests (C I).

It can be seen from Figure 23 that Jumper's simplification gives good

results at Mach numbers up to M = 1.35 -- within ten percent accuracy.

The results obtained from Version II' correlated to both flight test

data and those estimated by Northrop better at higher Mach numbers,

M - 1.40 to 1.80.

Two V/STOL Airplane Configurations With Wings of Variable Sweep

Two unconventional aircraft configurations were studied to see what

kind of results could be expected. These two were V/STOL airplane

.5 configurations with wings of variable sweep. The models of the aircraft

are described in reference 26 as Models I and II. These two configura-

tions were chosen because their unconventional shapes differed

significantly from the usual limitations imposed on the use of the super-

sonic area rule. The models were in a 1/10 scale and Mach number range

was from M - 1.10 to M - 1.30. The CD  data were available from the wind
0

tunnel tests described in reference 26.

Table III shows the results obtained by employing both Jumper's

modification and Version II'up to M - 1.3. It was assumed that no

separation occurs and the differences in the CD  data were basically
0

due to difference in the wave drag data pertaining to the two configura-

tions. That is why C D from the simplifications was compared directly
w

against CD from the wind tunnel drag pclars.
0
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.46 .. It can be seen from Table III that neither of the methods correlated

well to the wind tunnel measurements. The closest result found was that

for M = 1.20 obtained by using Jumper's simplified method, with a relative

error of 16.7 percent. Further, Version II gave even a wrong looking

CD vs M curve as the wave drag coefficient was increasing with increasing
w

Mach number over the range investigated.

The reasons for the results just described might be as follows:

1. Low wind tunnel data accuracy (± 0.001) which affects

directly the CD compared to. The disagreement between
0

the results from Jumper's simplification and the wind

tunnel data is probably -- but only partially -- due

to this fact.

2. The second, more important reason, is as follows:

LLet us suppose we have a simplified method
("first generation simplification")
applicable to a restricted class of
problems, and when applied to a problem
that does not belong to the restricted
class, the simplification gives highly
erroneous results. Let us go a step
further and simplify the simplification --

* we will get a kind of "second generation
simplification". Obviously, it will be
restricted to an even smaller group of
problems. But what will happen if for
any reason we try to employ our second
generation simplification to solve a
problem which was "out of reach" even
for the first generation simplification?
What quality can we expect from our
results? The answer is: None. That
is exactly the case in investigating
these aircraft by applying the simplifi-
cations of the full supersonic area rule
to the configurations which were very
different from those to which Jones
restricted his result -- the supersonic

.. ~ area rule. Essentially, Jones restricted
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.... ,his formula to thin wings centrally
* mounted on a slender body type fuselage

(see Ref 11:2). The two aircraft,
having a six percent thick, shoulder
mounted wing, clearly fall outside these
restrictions.

Two Aircraft Configurations Designed For Different Mach Numbers

Two aircraft configurations employing sweptback (60 degrees) wings

which were cambered and twisted and mounted in a mid-position were investi-

gated. The two configurations are described in reference 8. These were

chosen for investigation because, being designed for specific Mach

numbers, they had the zero-lift drag versus Mach number curves which

offered the lowest drag at the design Mach numbers of 1.0 and 1.4.

No reasonable results were obtained in this case. In my opinion,

this failure of both simplifications to correlate well to the wind tunnel

0 results could have been due to a low accuracy of input data available;

two extremely small figures (less than three by two inches) showing the

aircraft longitudinal cross-sectional area distributions were available.

It is interesting to note, however, that the two simplified methods failed

differently:

-- Jumper's simplification preserved the C D, vs M curve

shape while giving about two times lower CDw values

than the data (e.g., C = .0033 at M = 1.10).

-- Version II shows oscillations in the CD, values at

M - 1.10 to 1.40.

The wing thickness which varied from 12 percent at the wing root

to six percent at the 50 percent semispan section and then remained
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.P :i constant to the tip might also be a factor of secondary importance in

this case; yet, no doubt the existence of such a thick wing would have

'. affected the results even if more accurate input data were available

(Ref 8).

The mentioning of this case was intended to illustrate how crucial

-. accuracy of an input data set is to the quality of the results. This

indication motivated the limited investigation of the results sensitivity

to the input data accuracy which will be described in a later section.

Two Delta Wing-Body Combinations Contoured as Specified by the Transonic

Area Rule

Two delta wing-body combinations contoured according to the transonic

area rule to reduce the zero-lift drag at Mach numbers of 1.41 and 2.01

were investigated. The two configurations are described in reference 27.

1. Full body which was a body of revolution of

optimum shape or the given length, maximum
diameter, and base diameter.

2. Contoured body which was constructed according
to the transonic area rule so that the total
cross-sectional area of the wing-body combination
at any station was the same as that of the optimum
full body alone.

Both of these bodies had the same wing.

Additional configurations were described in reference 27; however,

these configurations had inconsistencies in the body shape variables and

the presence of the faired inlets, and so were not used.

The two configurations investigated are shown in Figure 24 and the

results obtained are given in Table IV.

It can be seen from Table IV that an excellent agreement in the

Sdata at M 1.41 was obtained by using Version II. At the higher
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U
' ' iFull body

.IContoured bd

Figure 24. Two Generic Aircraft Configurations

Table IV. Zero-Lift Drag Differences For

Two Generic Aircraft

M source
"____ source Wind Tunnel Jumper Version II'

1.41 .003 .0071 .0029

2.01 .0008 .0046 .0038

!, CD = D -DAC 0 o Full Body D Contoured Body
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. . Mach number differences in C D were small -- of the order of magnitude -

0
of the tunnel measurements error (± .0005) and no agreement was achieved

by using either of the modifications. On the other hand, these

configurations were of the type to which Jumper's simplification has

already been applied without success (large areas located far off the

axis -- see Section II, Simplifications to the Supersonic Area Rule.

The Effect of the Canopy Location on the Wave Drag of a Sweptback

WinE-Body Configuration

The effect of canopy location for a sweptback wing-body combination

designed to fly at transonic speeds was investigated by considering the

following two cases (Ref 28):

1. The canopy placed on the body so that the cross-
sectional area of the canopy approximately filled
the concave portion of the basic wing-body cross-

dsectional area distribution (design location), and

2. The canopy placed 0.0614 of the body length forward

of the design location.

Along with the two configurations, the basic wing-body (no canopy)

configuration was investigated.

The wind tunnel data showed a significant drag reduction for

configuration #1. Table V shows the results obtained by employing

the two simplified methods. It can be seen from the table that Jumper's

simplified method gave very good results for a number of cases,

particularly in predicting the wave drag increment due to moving the

canopy from the forward to the rear (design) position. Keeping in mind

that the wind tunnel data accuracy was ± .0005, Jumper's modification

showed not only the right trend in the wave drag changes, but actually
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predicted the reduction in the wave drag by the addition of the canopy at

the design position when compared to the wing-body alone.

Version II! failed to gi' e any reasonable results in this case. The

reasons for this failure will be discussed in Chapter IV.

Sensitivity of the Results to the Input Data Accuracy

As mentioned previously, the results of Section - Two Aircraft

Configurations Designed for Different Mach Numbers, suggested the need

for at least a limited investigation of the sensitivity of results to

the input data accuracy. Thus, the input data set for the F-5E was used

for this purpose since the data pertaining to that aircraft were the most

complete data available.

The sensitivity was investigated by calculating the wave drag

coefficient using input data A(x.) which were modified in a random

way within ± 5 percent limits.

The results of this investigation are presented in Table VI. It

would not be justified to draw general conclusions based upon this single

case but it should be pointed out that the sensitivity of Version II'

was considerably higher (i.e., the CDW2 Program was less tolerant) than

the Jumper method. The reason this might lie in the less regular

behavior of the area distribution when the Mach cone lateral surface

is employed rather than that obtained by making use of Mach planes.

This can be explained with the aid of Figure 25. If we approximate

the first derivative of the area distribution as

S'(x 1 (Sm+1  S )/(x - X m
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F 'W -. -.-W W

I Table VI. Sensitivity of the Results to
The Input Data Accuracy

Jumper Version II'

SCD CD CD A
'Exact' Exact E
Data ±5% Er. (%) Data -5% Er. M%)

1.1 .0366 .0395 + 7.9 .0227 .0314 38.3

1.2 .0296 .0325 9.8 .0222 .0305 37.4

1.3 .0250 .0282 12.8 .0213 .0302 41.8

1.4 .0218 .0245 12.4 .0207 .0297 43.5

1.5 .0198 .0220 11.1 .0206 .0302 46.6

1.6 .0184 .0205 11.4 .0207 .0299 44.4

1.7 .0161 .0181 12.4 .0209 .0287 37.3

1.8 .0149 .0163 9.4 .0212 .0330 55.7

1.9 .0140 .0148 5.7 .0212 .0289 36.3

2.0 .0134 .0136 1.5 .0204 .0294 44.1

C -C

A(M) D w ±5% w 'Exact' Data × 100CD
w Exact' Data
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AS M1<0
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Mach planes (a)

Mach cones
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*of Revolution A +
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Figure 25. The Input Data Error Effects

(a) Jumper's Method

(b) Version II'

69



LQ .v . -. l . . .- _- .+ ." -' * .- _~ -. . ._%.' . . -- : 'o _ - '.'* .. P .-Y ".. * .

i '.i where S - S exact + AS , it is obvious that a larger AS in
SM+l m+l m+l m+ 1

the case of the CDW2 Program will create larger deviations in the S'(x)

values and therefore, in the final result, the CDw value. An analogous

situation occurs when ASm+ is negative. In the case of Jumper's

procedure, random errors will tend to be cancelled out and it might,

therefore, be more forgiving.

A more systematic investigation should be conducted along this line.

7
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IV. Theoretical Reasoning for the Results Obtained

At the beginning of the present study, some indications, mostly of

an intuitive nature, existed suggesting that employing of the Mach cone

surfaces in a supersonic-area-rule-type procedure might lead to some

interesting results. The rationale for this situation was contained in

the fact that supersonic flow fields are, by their nature, more conical

than plane, and the higher Mach number we consider, the more conical

the flow field becomes.

The cases investigated have shown usefulness of the method and a

number of cases gave very good results, especially when one keeps in mind

the degree of the simplification proposed. On the other hand, the

simplified method proposed by Jumper appears to be generally superior to

0Version II'when considered over the entire range of Mach numbers investi-
gated and showed particularly good correlation to full supersonic area

rule predictions at lower Mach numbers. However, it can be stated

firmly, based upon this limited investigation, that Jumper's method

correlated better at lower Mach numbers while Version II did a better job

at moderate Mach numbers, from M = 1.4 to, approximately, M = 2.0. My

explanation for this is as follows. Basically what Jumper did is combined

an extended transonic area rule with the full supersonic area rule. Thus,

one would expect that the closer the Mach number is to unity (from above)

the better the results. Thus, it is not surprising that Jumper's method

proved to be superior over Version II' at lower, basically transonic Mach

numbers. On the other hand, the supersonic flow field becomes more

conical as Mach number is increased. This might be the rationale why
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employing the Mach cones, instead of planes, gives better results at

higher Mach numbers.

-. ' It should be pointed out that in applying either Jumper's method or

* J Version II', a user cannot neglect the restrictions which must hold for

the full supersonic area rule in order to expect any meaningful results.

Within these restrictions (as was the case for the F-5E aircraft with its

thin wing of small area, both simplified methods gave good results for

the aircraft, each method within its "favorable" Mach number range) one

N might expect reasonable results.

Finally, no reason other than success in predicting wave drag could

be found for multiplying by one half times the results from Version II.

Attempts to explain an apparently arbitrary factor were not successful.

So, this factor remains unexplained. It should be remembered, however,

that the supersonic area rule has a history of unexplained procedures

which are justified only by success. For example, the standard

supersonic area rule uses the frontal projections of oblique area rather

than the oblique areas themselves (Ref 3) which are the areas that should

be used from the theory (Ref 11).
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V. Conclusions

A modified method of the supersonic-area-rule-type was developed.

Instead of using the axis normal projection of the area cut by the

oblique Mach planes through the full aircraft configuration suggested by

Jones, Lomax, and Whitcomb, the down-stream Mach cone lateral surface was

used on the equivalent body of revolution of the configuration. A computer

program to perform the required calculations according to this modified

procedure was written. Several cases of actual aircraft configurations

and wind tunnel models were used for numerical investigation of the method.

Some promising results were found along with tremendous decreases in both

core storage and computing time required by the full supersonic area rule.

The following conclusions were indicated:

1. The modified method correlated well, particularly at
moderate supersonic Mach numbers (from M = 1.4 to
M - 2.0).

2. Like the supersonic area rule the best correlation was
achieved when dealing with thin wings centrally mounted
on a slender fuselage.

3. The method proposed by Jumper proved superior to the
new simplification at transonic and lower supersonic
speeds; however, the new method appears to be superior
at the higher Mach numbers.

4. The new simplification showed a high level of sensitivity
to the input data set quality -- input deviations of less
than five percent brought about untolerable discrepancies
in the wave drag values.

5. Further investigations of the method are necessary prior
to its general acceptance for quick and reasonable accurate
zero-lift wave drag calculations.
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._ Appendix I. Description of the Computer Programs Written To
Incorporate New Simplifications

A general flow chart type description of the procedures described

in Section 2 - Four New Proposed Simplifications of the Supersonic Area

Rule, is shown in Figure 26.

This procedure was translated into a computer program for calculating

a wave drag coefficient and a listing of one such program for Version II'

is given in Appendix I (the CDW2 Program).

Prior to performing any actual calculation, a set of input data had

to be read in. The set includes the following:

n -- The number of steps along the aircraft longitudinal
axis. It was recommended in reference 3 to keep
this number about 100 for both accuracy and processing
time requirement reasons. In the calculations
performed n was being given values between 64 and 128.

L -- The aircraft length.

sref -- Some reference area, usually the wing planform area.

machs -- The lowest Mach number at which the user wants to
calculate the wave drag coefficient.

machf -- The highest value of Mach number at which the wave
drag is to be calculated.

nm -- Number of Mach number steps in between machs and machf.

(Given machs, machf and nm the Mach number step size is calculated

as: dmach - (machf - machs)/nm.) 4

The next thing to be entered was:

A(i) -- The cross-sectional areas obtained by cutting the
configuration by planes normal to the aircraft
longitudinal axis. The A(i)'s require a double
precision format since the IMSL routines on the
VAX 11/780 series computer were used.

77



START

n,L,sref,machs, machf,
rm,A(i), lout

I

Calculates:

e

Calculates: S(i)
over employing the binary IIIIIIV

search and two

IMSL routineso
Calculates:over

x. S' (i), S"(i),E,
CD

W

over 
Output:

Mk M)CD
r ),S(i).'(i S"(i)

STOP

Figure 26. Flow Chart of the New Proposed Simplifications
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Once the necessary input data were entered an equivalent body of

revolution was constructed, i.e., the equivalent body radii re(i)

i = 1,2,. . .,n, were calculated by equating the aircraft cross-sectional

area at a given longitudinal location x to a circle that represented

the equivalent body of revolution cross-section at the same x using in

both cases the same planes normal to the x - axis. Having that the

following step was performedn 2-D space% the Mach cone started to move

from xI 
= Ax through the location given by xn_1 = (n-l)Ax (for Versions I

and II) or to x = nAx (for Versions III and IV). At every x an arean m

S was obtained in one among the four ways described in Section 2 -
m

Four New Proposed Simplifications of the Supersonic Area Rule. It was

necessary to employ a searching routine and another routine for approxima-

tion. The binary search technique and two IMSL routines (ICSCCU and

0ICSEVU) were employed. (The ICSCCU routine calculated elements of the

cubic spline matrix which were needed for the ICSEVU routine to calculate

re(x) at any given x between x1 and x = L.) The way in which the search-

ing routine employed works can be easily seen from Figure 27 and will be

discussed later. By using either between the Mach cone generators in the

xOz- plane and the equivalent body of revolution contour, intersection

points were found. Once the intersection point was found, i.e., x = t was

known and re(t) easily calculated, it was simple to calculate the area

according to any approach among the four described. (When either

Version III or IV is to be used the user needs to include the point

0(0,0) in calculations. Otherwise, the IMSL routines are required to

calculate re at an x < xI , i.e., outside the interval given as (xl,L),

and the rest of the computation gives wrong results.)
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S., Calculation of S(i) was performed at every axial location within a

do-loop over "i" (Figure 26). Once all of the S(i) were found, a new

equivalent body of revolution was constructed. That is, the body of

revolution obtained for a given Mach number of interest from the initial

body of revolution (that one which the whole aircraft structure was

collapsed to). To apply Eq (21) to that body, the second derivative

S"(x) was needed. From numerical analysis it is known that none of the

procedures for finding derivatives numerically is reliable enough --

even fivding the first derivative numerically can give results which are

too far from exact values. The reason for this situation is that two

functions can be very close to each other as values of the functions are

concerned, yet very different as for their slopes -- let aside the

second derivatives. The following schemes were tried:

1. The cubic spline first and second derivative evaluator.
There were oscillations in the second derivative sign
due to the nature of the approximation by the cubic

splines. Large errors occurred as a final result from
this scheme.

2. Smoothing data and then applying the cubic splines. Then

problems with the interval ends occurred.

3. The Newton forward and backward interpolation and then
differentiation.

4. The Newton forward at the beginning of the interval, the
Stirling formula in the middle, and the Newton backward
formula at the end of the interval.

5. Divided differences and averaged slopes.

The last three procedures gave better results but still erroneous

ones.

80



6. The scheme used in reference 3 which gave good results.

4i (Along the way the scheme was slightly modified which
resulted in a reduction of computation time of about
30 seconds for one Mach number.)

Having the second derivatives, the summation required was performed

and the wave drag coefficient was calculated. The summation was broken

into two parts and an analytical expression used to avoid singularity

in the natural logarithm value as i - j, in the way described in

reference 3. Then the procedure is repeated for another Mach number,

i.e., a do-loop over Mach number was formed.

The following is a brief description of the binary searching routine

as mentioned earlier.

The binary search procedure is known as a fast converging procedure

for determining points of intersection between curves of different types.

The reason for its fast convergence lies in starting the search by large

steps and decreasing the step size by dividing it by two as the search

comes closer to the point searched for. In this particular case, the

Mach cone generator (ray), i.e., the Mach line, originated at x(i) will

intersect the equivalent body contour re = re(x) at some point T, the

abscissa of which is x - t (Figure 27a). The end points of the interval

become the left (x I) and right (x r) limits. The first value of x at

which the equivalent body radius will be found is determined by line # 4

(Figure 27b). At that particular x - t a value for re is found by using

the IMSL routines for the cubic spline interpolation -- lines #1 and #7.

That is value r. If the r is close enough (within required accuracy) to

the h-leg of the triangle, the search will stop and an area of interest

will be found -- according to the program version employed (in Figure 27
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%'4.

' r, re  A l i me
eCase 2

x. xft m x nL

(a)

1 call icsccu (x,re,n,c,200,ier)

2 xl x(i)

3 xr 1

4 600 t f (xl + xr)/0.2d + 01

5 h = (t - x(i)) * tan(mi)

6 if( (l-t).It.O.ld-02) go to 400

7 call icsevu (x,re,n,c,t,r,l,ier)

8 if (abs(h-r).lt.O.ld-02) go to 400

9 if (h.lt.r) go to 500

10 xr = t

11 go to 600

12 500 xl - t

13 to to 600

14 400 S(i) = pi*h**2

(b)

Figure 27. Binary Search Procedure
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it was Version II). After this, the originating point of the Mach cone

generator was moved along the x- axis for the step size Ax, and a new

searching cycle was performed. Line #6 becomes prominent when A(L) 0 0,

and h < re(L), case 2 in Figure 27a.

0
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c * PR06AA M CDW2. F

c
4 C

C

c This program calculates the wave drag coefficient,
c by employing a modification to the standard supersonic
c area rule as proposed by Capto First Class Vojin R. Nikolic
c - Yugoslav Air Force. The program was written as a part of
c his thesis pro.ject , 1983,
c
c The input data set required consists of:
c n = the number of steps along the aircraft longitudinal
c axis* recommended n = 100 to 200.
c 1 = the aircraft length
c sref = reference area
c machs = the lowest Mach number at which the wave drag
c is to be calculated
c machf = the highest Mach number ait which the wave drag
c is to be calculated
c nm= the number of Mach number steps
c iout = the integer which determines the form in which
c the output will appear in the following manner.
c if iout = 1 the results will appear as Q table
c consisting of the Mach numbers and
c the wave drag coefficient values
c if iout = 2 the output will include results of
c following intermediate steps:
c - equivalent body of revolution
c radii,
c - Mach cone cut area distributions,
c - First and second derivative of
c the area distributions,
c The above three groups of results
c will be given at every x(i) -
c axial location
c a(i) = the cross-sectional areas at n locations
c

common a(200),re(200),s(200),x(200),c(200,3),y(200),sx(200),
lunKy(400)pp(205)

real machs,machf
integer nier
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double precision x(2OO),re(20O),s(2 O),t,r,i,m3chJi ,dx.
lc(200,3)

open(7,file='inpcdw')
rewind 7
open(6,file='outcdw')
rewind 6

c
c This port of the program reads the set of input data, The
c double precision formats are necessary if IMSL routines
c are to be used on the VAX 11/780 series computer.
c

read (7,10) n
10 format(i4)

read (7,11) 1
11 format(d12.5)

read (7,12) sref
12 format(f8.3)

read (7,11) machs
read (7,11) machf
read (7,15) nm

15 format(i2)
read(7,17) iout

17 format(il)
C

c The following part of the program writes the input set
c except for the a(i) values forming a heading of the
c output.
c

write (6,20) n,l,sref,mQchsmachfnmiout
20 format(10(/),L5x,'INPUT DATA',/,37x,

1'for the wave drag coefficient (Cdw) calculation',//,38x,
2'Number of steps along the x-axis : n =',1xi4,/,
338xp,'Length : 1 =',1x,f8.3,1×,'ft',/,38x,
4'Referent area : sref =',lx,f8.3,1x,'sq ft',/,38x,
5'Free stream Mach numbers are :',/,40x,
6'- Mach number to start with : machs =',1x,f4.2,/,40x,
7'- Mach number to finish with :machf =',If4.2,/,40x,
8'- Number of Mach number steps O nm =',1x,i2,//,38x,
9'Output will appear in form ;',lx,il)

pi=O.31415926536d+01
dx=l/n

if(iout.eq.2) write(6,30)
c
c Now the cross-sectionQl areas are read in and radii
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c of an equivalent body of revolution are calcui atd.
c

do 100 i=1,n
read (7,40) a(i)

40 format(f12.5)
x(i)=idx
re(i)=sqrt(a(i)/pi)
if(iout.eq#2) write(6,50) ix(i),a(i),re(i)

100 continue
c
c The IMSL routine ICSCCU calculates the cubic spline
c coefficient matrix, C.
c

call icsccu (xre,n~c,200,ier)
fnm=float(nm)
dmach=(machf-machs)/fnm
mach=machs-dmach
if(iout.eq.1) write(6,21)

c
c Now the outer do loop within the program - that
c one over Mach numbers starts.
C

do 800 K=1,nm+l
machmmach+dmach
mi=asin(O.ld+01/mach)

c
c Do loop 700 does the following:
c - finds the intersection points
c between the Mach lines and the
c equivalent body of revolution
c contour, (the binary search and
c the IMSL routines ICSCCU nd
c ICSEVU are used)
c - calculates the forward projections
c of the Mach cone cut areas (label
c 400)
C

do 700 i=ln-1
xl=x(i)
xr=l

600 t=(xlxr)/0.2d+01
h=(t-x(i))$tan(mi)
if((l-t).ltO,.ld-02) go to 400
call icsevu (xre,n,c,200,t,r,1,ier)
if(abs(h-r).lt.O.ld-02) go to 400
if(h.ltor) go to 500
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go to 600

400 s(i)=pi*h**2
700 continue
C connection
c conversion 0' double precision into single precision

nxy=n-1
do 711 i=Ijn-1
y(i)=sngl(s(i))
s>(i)=sngl(x(i))

711 continue
el~sngl(l)

c
c The first derivatives of the area distributions

-~ c SWx - using a nested average technique. (up to label 23)
c

unKY(1Oi )=Y(2)/(2-*dx)
unKy(100+nxy)(y(nx:y)-y(nx:y-1) )/dx
unky(99+nxy)=(y(nxy)-y(nxy-2) )/(2 .*dx)
do 23 .j3,nx<y-l
tri=(yQ,)-yQj-2) )/(2.*dx)
q'iad1=(y(.+1)-y(.j-2) )/(3#*dx)
if(jseq.3) then
quad2=y(j)/(3#*dx)
penty(j+1)/(49*dx)
else
quad2(y(,)-Y(,j-3) )/(3,*dx)

end if
quad=(quadI+quad2)/2#
unky(9'+j )(tri+quad+pent)/3#

23 continue
c
c The second derivative of the area distribution S'(x)
c using the same technique as above , (up to label 25)

* c
ap(1)=0.0
ap(2)=(unKy(102) )/(2.*dx)
Qp(nxy+1)=(unKY(100+nxy)-unKy(99+nxy))/dx
ap(nxy)=(unKY(100+nxy)-unKv(98+nxy) )/(2.*dx)
do 25 j=2nxy-2
tri(nKy(j+101)-inKy(.j+99))/(2.*dx)
quadl(unKy(j+102)-unKy(i+99) )i(3,*dx.)
if(.peq.2) then
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quad2=(urK,(j+1O,1 ) )/(3#*d>,)
pent=(uny(.j+102) )/(4. *dx)
el1se

* 4 quod2=(unKy(j+101)-unKy(j+98) )/(3.*dx:)
pent=(unKy(j+102)-unky(j+98) )/(4.*dx)
end if
quad=(quad1+quod2)/2,
ap(j+l)=(tri+quod+pent)/3,

25 continue
c

*c Now the numerical integration needed is performed
c and the wave drag coefficient is colculiatedo
c Then the results are written in the form
c determined by the iout v'ilueo

4- C
cdwtot=0#0
wdtot=0. 0
cwdtot0 .0
do 27 i1,pnxy
cdwtot=0*0
do 26 j1,nxy
x i=i
xj=J
x:nxy=nxy
orgu=(xi/xnxy-(xi-1. )/xnxy)
Grg=Qbs(xi/xnxy-xj/xnxy)
if(j .lt~i~or..j~gt~i) cdw=ap(j)*alog(Qrq )*el/nxy
if(joeq~i) cdw=Gp(j)*2.*(el*(-bs(ru*lo(Qrgu)-rg'J)))
cdwtot=cdwtot+cdw

26 continue
wdtot=p (i )*el/nxy*cdwtot
cwdtot=cwdtot+wdtot

27 continue
cdwtot=-.5*cwdtot/3, 1415927/sref
cdw=cdwtot/2,
if(ioutoeqtl) then

21 form~t(6(/),60x,'RESULTS',/,60x,7('='),//,
137x ,53( '-') ,/,37x, 'I /,25x, 'I' ,25x, 'I' ,/,
237x,'I',12x,'M',12x,'I',llx,'CDw',llx,'I',/,
337x, 'I' ,25x, 'I' ,25x, 'I' ,/,37x,53( '-'))

writ@(6,31) machpcdw
31 formot(37x,'I',10xvf4.2,llx,'I',9x,f7.5,

19xP1I',/v37x,53('-'))
else

30 formot(///p48x,'EGUIYALENT BODY OF REVOLUTION RADII',
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50 forma-t(/,46x,i4,4x,,d12.5,4.,fB-3,4,a2,.3 ))
write(6,60) mach

60 formot(4(/),50x,'MACH CONE CUT AREA DISTRIBUTION',/,63x,
1'M =',lxtf4.2,//,SOx,'i',9x,'x(i)llx,'s(x)',/)

do 701 i1,pn-1
write(6p70) ipx(i),s(i)

70 formot(/,48xpi3,3xpd12.5,8xpd12.5)

701 continue
80 writeC6,B0) mach
so formot(////,47xp'FIRST AND SECOND DERIVATIVE OF 9(X)',!,
160x, 'N ' ilxpf4.2,//,32x, 'i' ,Ix, 'x(i)' ,iix,
2'fder(i)',9x,'sder(i)',13x,'s(x)',//)

do 704 ifl,nxy
write(6,81 ) i,sx(i),unky(100+i),ap(i+1),y(i)

81 fornat(/,30x,i3,4x,f12.7,4x,f12.7,4x,f12.7,4x<Pf1.7)
704 continue

write(6,28)moch ,cdw
28 formot(//,'At a Mach number of :',lx, f4.2,

12x,'the wave drag coefficient is :#',f7#5)
end if

N800 continue
end

0%

ILI



Vita

Vojin Rade Nikolic was born on November 10, 1950 in Decane, Yugo-

slavia. He graduated from high school in Titograd, Yugoslavia in 1969.

In 1972 he joined the Yugoslav Air Force. From 1975 to 1978 he attended

the University of Belgrade, Belgrade, Yugoslavia, where he earned the

degree of Bachelor of Science in Aerospace Engineering. In June 1982

he entered the School of Engineering, Air Force Institute of Technology.

'

90



UNCLASSIFIED
SECURITY CL.ASSIFICATION OF THIS PAGE

:REPORT DOCUMENTATION PAGE
REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
2.. ECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
2a. OECLASSIFICATION/DOWNGRAOING SCHEOULE distribution unlimited.

4. PIRFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GAE/AA/83D-16

6.NAME OF PERFORMING ORGANIZATION OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

School of Engineering i FTE
Ge. AgRes (City. Stat a.d ZIP Code) 7b. ADDRESS (City. Stb and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

ft. NAME OF FUNOINGSPONSORING lab. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if appiabl )

ft. ADDRESS I - ty. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

11. TITLE (Include Secwty Ci"maiteto)

2. PERSONAL AUTHO(S)
Vojin R. Nikolic, Capt. 1st Class, YAF

TYPE OF REPORT 13b. TIME COVE RED 14. DATE OF REPORT (Yr., Mo.. Day) 16. PAGE COUNT

MS Thesis IFROM _ TO _ 1983 December 90
1L SUPPLEMENTARY NOTATION rove I y l Te eae: JAW AF 190-17.

Dean for I eo lih nd Professional D velpme t

17. COBATI COOES 11S. SUBJECT TERMS (Continue on in *d/i- mb bio number)

,l GROUP SUBI1. G. Supersonic Aircraft Configurations, Wave Drag,
04- Supersonic Area Rule, Simplified Supersonic Area Rule

19. ABSTRACT (Contine on revese it neeemj and idea dry by block number)

Title: AN INVESTIGATION OF NEW POSSIBILITIES TO SIMPLIFY
THE STANDARD SUPERSONIC AREA RULE

Thesis Chairman: Eric J. Jumper, Major, USAF

OISTRIBUTION/AVAILASILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

CLASSIFIEDUNLIMITEO C SAME AS oPT. 03 DTIC USERS 03 UNCLASSIFIED

NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL
(Include Arwa Code)

Eric J."Jumper, Major, USAF 513-255-3517 I AFIT/ENY
D FORM 1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE. UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

-"* " .?,, . eX .,' ," -4"-- 
.

." 
.

.'" .'" .4' ." - . "- " 4'. ".". -', 4.. -. "" ."" "-. . . -'



UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

I i
A modified method of the supersonic-area-rule-type was

developed.- Instead of using the axis normal projection of the
area cut by the oblique Mach planes through the full aircraft
configuration suggested by Jones, Lomax, and Whitcomb, the
down-stream Mach cone lateral surface was used on the equiva-
lent body of revolution of the configuration. A computer
program to perform the required calculations according to
this modified procedure was written. Several cases of actual
aircraft configurations and wind tunnel models were used for
numerical investigation of the method. Some promising
results were found along with tremendous decreases in both
core storage and computing time required by the full super-
sonic area rule.

UNCLASS IF I ED

SECURITY CLASSIFICATION OF THIS PAGE



I-I

* II

47

t IL,

-VI-9- . .--- a-..-.- -. - -if


